November '07

Volume 4.11

nvironmental reverage

The Wastewater Insight

AMMONIA TOXICITY- METH LABS

Ammonia problems in Wastewater Treatment plants- Midnight dumping

Your plant typically runs like clockwork, and you rarely have problems with nitrification. All of a sudden you have having weird spikes in ammonia and your nitrifiers are having problems or you wind up with other strange reading on your influent. What is going on?

We have seen this happen lately and were surprised at what we found out. Clandestine methamphetamine laboratories have been a growing problem throughout Colorado and across the United States. In Colorado alone, the number of meth lab busts reported by the Colorado Bureau of Investigation has increased dramatically over the past few years. More than 12 million Americans are believed to have tried it, and 1.5 million are regular users. Nearly 10,000 clandestine labs that produce it were discovered in one year alone. High-quality meth that is cooked to 90 percent or higher purity can run \$5,500 a pound.

Methamphetamine or "meth" is a powerful, highly toxic, addictive drug that is illegally "cooked" in underground or hidden homemade labs. Meth is considered the most dangerous drug in the world. Meth labs have dramatically increased over the past several years because meth recipes are more readily available, it is relatively easy and cheap for anyone to make, and the resulting "high" lasts longer, about 2 to 14 hours versus only 15 minutes for someone with a cocaine high. A meth high produces an intense euphoric sensation called a "rush," described as an extremely pleasurable high of hyper-alertness, extreme energy, and confidence. Users become addicted guickly and use it with increasing frequency and in increasingly large doses. Meth simulates the body's natural pleasure chemical Dopamine. The body typically produces 150 units, vs. use of meth produces 1200 units, and at a very long sustainable time. This is extremely addictive to the body, but also highly damaging.

Meth labs may be set up at campgrounds, rest areas, rental homes, motel rooms, abandoned cars, garages, storage sheds, and vacant buildings. A typical meth lab looks like a collection of chemical bottles, glassware, hoses, and pressurized cylinders. The cylinders can take many forms, including modified propane tanks, fire extinguishers, scuba tanks and soda dispensers. The tanks usually contain anhydrous ammonia or hydrochloric acid – both highly poisonous and corrosive.

Meth lab equipment is frequently abandoned after use and the potentially explosive and very toxic chemicals and waste products are left behind. These materials are commonly abandoned alongside the road, in a convenient dumpster or left in a motel room, often in boxes or duffel bags. Abandoned chemicals may also be dumped on the ground in the woods or along roads, or may be dumped in a small pit and set on fire.

Consider this: for every pound of cooked meth produced, it is estimated that five to seven pounds of hazardous chemical

MYSTERY BUG OF THE MONTH

Check out our website for more photos of our new mystery bug!!!! WWW.EnvironmentalLeverage.com

waste are also produced. Cooking generates a long list of noxious solvents and gases, such as hydrogen chloride, phosphine, and meth itself. Much of the waste is dumped down the drain.

What are some of the common meth lab chemicals and equipment?

Common chemicals and equipment found at meth labs include: Chemicals often used in meth production include: iodine crystal, hydrogen chloride, acetone, lithium metal, drain cleaner, battery acid, antifreeze, red phosphorus, ether, lye, alcohol, and Freon®.

Chemicals commonly used

- · Ephedrine or pseudoepherine tablets
- · Acetone, toluene, alcohol or paint thinner
- Iodine
- · Red phosphorous (matches, fireworks)
- \cdot Anhydrous ammonia (in propane tanks or coolers)
- · Camp stove fuel (naphtha)
- Starter fluid (ethyl ether)
- Lithium batteries
- Sulfuric acid, muriatic acid, phosphoric acid
- Sodium hydroxide (lye)
- · Hydrogen peroxide
- Rock or table salt Toluene (break cleaner)
- Ether (Engine starter)

Methanol (gas additives)

INSIDE	
	Bug Of the Month
(2)	Toxicity- meth labs
(3)	Boiler- Cooling Tower
\bigcirc	blowdown
X	
5	New Websites

2 WWW.EnvironmentalLeverage	ge.com The Wastewater Insight
Trichloroethane (gun scrubber)	hydroxide solutions), and mixtures with residual ephedrine,
Kerosene	methamphetamine, iodine or red phosphorous.
Gasoline	
Muriatic acid (driveway cleaner)	Cvanide is a byproduct of meth production and can significantly
Paint Thinner	impact a wastewater plant if in high enough concentrations.
	Some other chemicals that might wind up in the drains include
Household Equinment used	lodine compounds. Chloropseudoephedrine. Phosphine gas
. Glass containers (all cook ware such as Pyrey or Corning	(produced from overheating). Yellow or white phosphorous.
ware)	Various used acids (hydriodic and phosphoric acid gas). Meth
Plastic or rubber tubing	residues and Residual unused chemicals. VOC's from meth labs
- Funnels	have been knows to reach over 10.000 ppm!
Propage tanks (with corroded bent or tampered valves)	····· · · · · · · · · · · · · · · · ·
. Coffee filters (with red stains or enhedrine residues)	
. Some type of power source or camp stoves or bot plates	One material believed to cause wastewater problems toluene -
- Bubber gloves	- can be used in the production of methamphetamine. But it's also
. Drain cleaner	used in materials found in a variety of other places, including
· Empty cans of toluene, alcohol or paint thinner	auto body snops and beauty salons. The three chemicals having
. Starter fluid	the biggest impact on the environment are acetone, ether, and
. Iodized salt	white gasoline
. Hydrogen peroxide	What are the single you have a math lab in your
. Empty nill bottles, boxes or blister packs	what are the sings you have a meth lab in your
Measuring cups, turkey baster	Community- Waird anikas is leading, sudden unget een ditiens is vour slout
Hot plate tape strainer aluminum foil	wend spikes in loading, sudden upset conditions in your plant,
Blender or coffee a rinder	brown eindent, loss of nitrification, innitient nigh TOC, nigh amine
	levels
The most common chemicals used to start the meth-making	The problem can be exacerbated by the fact that these dumps
process are over-the-counter cold and asthma medications that	typically occur at night, when wastowater flows are minimal and
contain ephedrine or pseudoepherine as decongestants or	there is loss water to dilute the problem chemicals
stimulants. The two most common methods using these	there is less water to dilute the problem chemicals.
chemicals are primary ingredients are the Red Phosphorous and	What should you do about it?
Birch methods. These chemicals are present in many common	If you suspect dumping, the authorities must be involved
over-the-counter cold and asthma medications.	Tracking unstream in the lift stations for point source parrowing
	down may be a way to come close deographically to the source
Some of the warning signs of a suspected meth lab include:	Then leave it up to the Federal Authority and police

Strong or unusual odors Residences with windows (solvents, ammonia, ether-like, blacked out vinegar-like, pungent, acrid or sour) Discoloration of structures, Renters who pay landlords in cash pavement and soil Increased activity, especially at Excessive trash night Unusual security systems or Unusual structures other devices

Meth labs are considered hazardous waste sites and should only be entered by trained and properly equipped professionals (i.e., first responder Hazardous Material (hazmat) Teams). Never handle materials you suspect were used for making meth, such as contaminated glassware or needles. Skin contact can result in burns or poisoning. Handling items can also cause some of the chemicals to ignite or explode on contact with water or air.

DO NOT ENTER a site that you think may be used for cooking meth. Immediately call your local police department. Meth labs present extreme dangers from fire, explosions and exposure to hazardous chemicals. Breathing chemical fumes or handling unknown substances can cause injury and even death.

What are the typical chemicals that may wind up in the sewer and down to your wastewater plant?

The most common types of contaminants expected to be discharged in septic systems associated with meth labs are: solvents (e.g., toluene, xylene, alcohol, acetone); petroleum distillates (e.g., paint thinner, camp stove fuel); liquid corrosives (e.g. sulfuric acid, muriatic acid, sodium If just minor chemicals have been spilled that are impacting your plant such as ammonia and amines, make sure to check alkalinity in your plant. Sometimes just increasing that will help your plant handle the extra loading. pH adjustment may be needed if you have caustics or acids dumped down.

Next thing is to focus on the health of your wastewater

Sometimes bioaugmentation can be used to help if you plant is impacted. Bioaugmentation can help break down some of the toxic chemicals, help with upset recovery, help with nitirification reseeding or to just handle the additional loading.

http://www.methresources.gov/

treatment plant.

More information on Meth problems, how to identify and what to do as well as local resources and links

http://www.state.sd.us/denr/DES/WasteMgn/HWaste/MethLabCl eanup.pdf

Guidelines for meth lab clean up reduction in waste

http://www.popcenter.org/Problems/Supplemental_Material/drug _labs/MN_CG_2003.pdf Drug labs clean up guidelines

http://www.p2pays.org/ref/04/03259.pdf Guidelines for Hospitals and medical facilities

Sometimes it is not illegal labs, but hospital, dental or doctors offices. Check to see what is being discharged into your facility and how it can impact your wastewater treatment plant.

3 WWW.EnvironmentalLeverage.com The Wastewater Insight

Industrial Facilities- Cooling Tower Blowdown and Boiler Blowdown

Where does your Cooling tower and Boiler blowdown discharge to?

The primary use of large, industrial cooling tower systems is to remove the heat absorbed in the circulating cooling water systems used in power plants, petroleum refineries, petrochemical and chemical plants, natural gas processing plants and other industrial facilities. The absorbed heat is rejected to the atmosphere by the evaporation of some of the cooling water in mechanical forced-draft or induced draft towers. More than 90 percent of all the water used by industry and about two-thirds of the total wastewater generated by U.S. manufacturing plants is the result of cooling operations.

The circulation rate of cooling water in a typical 700 MW coalfired power plant with a cooling tower amounts to about 71,600 cubic meters an hour (315,000 U.S. gallons per minute)[1] and the circulating water requires a supply water make-up rate of perhaps 5 percent (i.e., 3,600 cubic meters an hour).

Petroleum refineries also have very large cooling tower systems. In many refineries, makeup water to the cooling tower can account for up to 50% of the total demand for fresh water. A typical large refinery processing 40,000 metric tons of crude oil per day (300,000 barrels per day) circulates about 80,000 cubic meters of water per hour through its cooling tower system.

Some plants have pretty clean boiler and cooling tower blowdown except for dissolved salts. BOD's typically range from 2-5 ppm. This is relatively clean water. If you are discharging to a local POTW, and you have a pretreatment system, your best bet is to add the boiler and cooling tower blowdown flows downsteam of your wastewater plant to allow for more time in your wastewater plant for critical loading from the process side. Hydraulic overload during huge spikes of flow from a cooling tower can significantly impact plant efficiency.

Discharge to POTW-Here is a perfect example of a plant- 4 gpm was from the boiler blowdown, and cycles of 18 up to 100 gpm came from the cooling tower. The process side only had 5 gpm of concentrated wastewater with a very high BOD. If you take out the cooling tower flow, with a BOD of 2-4 ppm, and just run your concentrated wastewater through your system, you now allow for more time to degrade the organics in your system. The addition of the cooling tower and boiler water at the back end will still be added to your flow, but the extra time in the wastewater plant for the concentrated waste now should significantly increase the amount of treatment capabilities, and

lower the final effluent. Since you are discharging to a POTW,

Table I

Characteristics of effluents from cooling tower

Sl. no	Parameter	Value
1.	pН	7
2.	Conductivity (µs/cm)	3350
3.	Total hardness	351
4.	Calcium hardness	256
5.	Total dissolved solids	2500
6.	Total suspended solids (TSS)	50
7.	Chloride	713
8.	Sodium	678
9.	Potassium	54
10.	Sulphate	233

Note: Except for pH and conductivity, all other parameters are in mg/l.

you should not have to worry about occasional spills if you monitor and control your boiler and cooling tower sufficiently.

Cooling tower blowdown can contain zinc and chromates, which must be removed prior to discharge into the environment. High levels of zinc have been known to impact nitrification, so check to see what type of chemistry you are using in your cooling tower.

High sulfates or phosphates may be present depending upon the type of chemical treatment used. High Sulfates can impact oxygen efficiency in the wastewater plant.

Typical Oxygen requirements in a wastewater plant

- 5 lbs. oxygen oxidizes 1 lb. nitrogen
- 3 lbs. oxygen oxidizes 1 lb. carbon
- 1-1.5 lbs. oxygen oxidizes 1 lb. B.O.D.
- 1 lb. oxygen oxidizes 1 lb. hydrogen sulfide
- .67 lb. oxygen oxidizes 1 lb. manganese
- .4 lb. oxygen oxidizes 1 lb. Iron

Most cooling tower applications utilize 6-12 cycles of concentration. That is an optimum range considering the cost of chemicals and blowdown requirements. The cost of cooling tower chemicals increases greatly when you decrease the cycles of concentration. The cost of the raw water and disposal of water have to be addressed.

Treatment alternatives include chemical reduction, ion exchange, and electrochemical reduction. A novel process involves lime softening with recycle of the treated water to the cooling water system. The best technology to utilize is a function of coolingwater quality. If makeup water is high in hardness, lime softening may be most appropriate.

All systems require a chemical treatment program that addresses four areas:

- -Scale
- -Corrosion
- -Pouling
- Microbiological growth

Scale and corrosion inhibitors are typically injected into the system by positive displacement pumps that meter precise dosages.

Check to see what types of chemical treatment you are using, whether you are using phosphate treatments, toxic chemicals to your bacteria, or you have relatively clean blowdown from either your cooling tower or boilers. It can make a big difference in where this water is sent through your wastewater treatment plant.

WWW.EnvironmentalLeverage.com The Wastewater Insight

did a water balance in vour plant-Sand filter backwash, carbon filter drinking water backwash, steam trap condensate, sample lines

4

that are kept open, meters, Water softener, make up water, RO filtrate, condensates, holding tanks, wet wells, pits, storm water. Boiler Blowdown: The use of boiler blowdown as cooling tower makeup is another reuse scheme that has been employed at a number of locations.

Storm water is a big one. Storm water should be relatively clean, and should not be running through your wastewater treatment plant. It can significantly cause hydraulic overload.

Do a walkthrough of your plants system, check to see where all the water flows wind up. You would be surprised at the sources and total water balance if you give it a double check. If you need help with this, let us know.

Table 7 – Typical Quality Guidelines for Chemically **Treated Circulating Water**

Property of Water Recommended Level

pН Hardness as CaCO3 Alkalinity as CaCO3 **Total Dissolved Solids** Conductivity Chlorides maximum as NaCl Sulfates Silica

6.5 to 9.0* 30 to 750 ppm2 500 ppm maximum2 1500 ppm maximum 2400 micromhos3 250 ppm maximum as CI 410 ppm 250 ppm maximum

150 ppm maximum

Examples of a typical Plants:

A Refinery circulating 150,000 gpm +Evaporates about 4.3 million gal/day +Discharges about 1.0 million gal/day +Makeup of 5.3 million gal/day

A large Power Plant circulates 400.000 +Evaporates about 11.5 million gal/day +Discharges about 2.5 million gal/day +Makeup of 14 million gal/day

Depending upon where you live, the cost of fresh water (\$1.00 to \$2.00/1,000 gal or

\$0.26 to \$0.52/m3). Now add the cost of additional treatment to reach discharge limits (\$2.00 to \$4.00/1,000 gal or \$0.52 to \$1.04/m3)

You can see why performing a total water balance in your plant, and considering all the options you have can make a big difference in operating costs as well as efficiency.

Training Classes

We have had many people ask when we are going to hold our next training class. This will be a one day general wastewater class with hands on microscopy. Activated Sludge Process Control

November 13th. 2007

City of Macomb Waste Water Treatment Plant 901 W Grant

Macomb Illinois 61455

309-333-0388

Please let us know if you are interested in attending or in hosting a class onsite at your own plant

Bological Wastewater reatment Seminar rell prost the

gistration Ferrs ne Central City of I T-m Desilie Organistics Teriner Adda City, Province, Pental Code Burger Plane Buinco Fat ore-mail Registration Feature Strice ere made che

whicehooting Activated Study

Last Month's Mystery Bug

Last month we had Gastrotrich as our Mystery Bug. These are macroinvertebrates. These are typically found in a very old sludge, with low F/M conditions. There are numerous photos of these on our website. Every Bug of the month we have in our newsletter is posted on it's own separate page with more critical information on the species type, the environment found, and what it indicates about the conditions present in your wastewater treatment plant.

Misc. websites **Environmental Leverage Inc.** offers

consulting services, beneficial reuse, training and bioaugmentation programs that can help reduce your surcharges.

Contact our office today to find out how your can start saving money and become more efficient at your plant!!! Many times we have suggested articles for the next months issues. Sometimes we change what we will be featuring based upon critical issues that surface during our contacts with our customers. We hope this does not inconvenience you. If you have a specific topic you are interested and do not want to wait to see if it shows up in our newsletters, call us direct. We do have over 20 gigabytes of information on file on every subject around on water and waste issues.

COMING IN THE NEXT MONTHS

Membrane Equipment

Metol of Parset riconsettal Lexings Inc. Al Arcent enclose58